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LE'ITER TO THE EDITOR 

Damage spreading and multifractality in the travelling 
salesman problem 

E N Miranda and N Parga 
Centro Atdmico Bariloche? and Instituto BalseiroS, 8400 S.C. de Bariloche, Rio Negro, 
Argentina 

Received 4 July 1989 

Abstract. We study numerically the spreading of damage in the Euclidean travelling 
salesman problem. There is a critical temperature T, 0.20-0.25 below which damage does 
not spread. We search for multifractal behaviour in the moments of the damage probability 
distribution. Multifractality is found in the frozen phase when the moments are monitored 
as a function of time. If they are evaluated with the number of cities, multifractal behaviour 
occurs in the chaotic phase. 

The way damage spreads throughout a cooperative system is a question that arises in 
many fields of research. For instance, this problem has been studied in the Kauffman 
model [ l ,  21, cellular automata [3], 2~ and 3~ Ising models [4,5] and spin glasses [6]. 
As a general rule, there is a region in the space of parameters where the damage 
spreads over all the system. This regime is known as the chaotic phase. On the other 
hand, the region where the damage does not spread defines the frozen phase. It should 
be remarked that this is a dynamical phase transition, which means the results might 
depend on the dynamics used. So, opposite results may be obtained with different 
dynamics; see [4,6]. Here we study the spread of a small perturbation-the damage-in 
the Euclidean travelling salesman problem (TSP) in two dimensions. 

Multifractality [7] has recently been observed in many different systems. The 
distribution of voltages in random resistor networks is a typical example of the 
occurrence of multifractal behaviour [8]. It has also been observed in the damage 
spreading for the Kauffman model [9,10]. Each moment Mq of this distribution scales 
with a unique exponent which depends non-linearly on q. We also look for multifrac- 
tality in the damage spreading probability distribution in the Euclidean TSP. 

From a numerical study of the Euclidean TSP we find a critical temperature 
T, = 0.20-0.25 above which the damage spreads-the chaotic phase-while below it 
the system is in a frozen phase. We calculated several moments of the damage 
probability distribution and checked for multifractality in the scaling exponents. When 
the moments are evaluated with the number N of cities, we find clear signs of 
multifractality (spatial multifractality) in the chaotic phase. When the moments are 
monitored as a function of time, multifractality occurs in the frozen phase (time-like 
multifractality). 

The TSP is a classic example of a complex optimisation problem-easy to formulate, 
yet hard to solve. It belongs to the class of NP-complete problems. The TSP is simply 
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stated. A list of N cities and their distances are given. The purpose is to find a tour 
such that the total length I covered in travelling through all the cities and returning 
to the first one is minimised. There are two ways of choosing the distances between 
the cities: (i) the positions of the cities are random, their distances being then evaluated 
with the Euclidean metric; (ii) the distances themselves are random variables. This 
last choice is particularly suitable for analytical calculations. Simulated annealing [ 111 
has proved to be an appropriate algorithm for finding approximated solutions: a 
fictitious temperature T is introduced and a Monte Carlo simulation is performed. It 
has been found that many analytical tools and concepts developed in the mean-field 
theory of spin glasses may be useful to study optimisation problems [ 12-15]. In fact, 
there are analogies between spin glasses and the TSP [14,16]. 

We simulated the TSP with Euclidean distances using the Metropolis algorithm. 
The length I plays the role of an energy. In order to have well defined thermodynamical 
quantities [12], the temperature T and the length 1 should be normalised as follows: 
1 = LdN and r = T / d N .  The basic Monte Carlo updating strategy is a two-bond or 
2-opt replacement [17]. In this operation two cities chosen at random exchange their 
positions in the tour. The cities between them are traversed in the opposite direction. 
This procedure has the effect of ‘flipping’ the subsection with respect to the entire tour. 
This change is accepted without further conditions if A l a 0  and with a probability 
exp(-Al/T} if A1 > 0. The simulation proceeds until the system is in equilibrium at a 
given temperature T. Then, at time t = 0 we make two replicas, B and C, of the original 
system A. The initial tours in replicas B and C are obtained by introducing a 2-opt 
transformation in B and C and another one in C. An order parameter can be defined 
in the following way. If QAB is the overlap between replicas A and B 4 . e .  the fraction 
of common bonds-then Q is given by [4] 

Obviously, Q(0)  = 1. If the damage spreads Q ( t )  will decrease with time. Then, in 
the chaotic phase, limt+m Q( t )  < 1. In the frozen phase limt+m Q( t )  = 1. It is convenient 
to work with the related order parameter 

0 ( = QAB ( ) + QBC ( t ,  - QAC ( ) *  

(I, = -1% 
which makes the evaluation of the critical temperature easier. (I,( T )  is shown in figure 
1 for N = 49. Clearly, there is a sudden change in its behaviour at T, = 0.20-0.25. 
Below T, the damage does not spread: the system is in a frozen phase. Above T, 
damage spreads: it is in a chaotic phase. The behaviour of T, with N was analysed 
but no appreciable dependence was found in the range between N =:49 and N = 196. 
It should be remarked that close to T, the dynamics exhibits strong fluctuations, which 
makes the estimation of the critical temperature difficult. 

Next we analyse the appearance of multifractality at the onset of the chaotic 
transition. Let us consider the probability that a site has been damaged at time t 

P i ( l ) = n i ( r ) (  7 n j ( t ) ) - l  

where ni(t)  is the number of times site i has been damaged up to time t and the sum 
in the denominator runs over all damaged sites. 

These probabilities are easily measured; once they are known their distribution is 
given by 

fW=c S ( P - P , )  
i 
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It is expected that as a function of time Mq - f"q).  In the chaotic phase, damage 
spreads easily with a constant propagation velocity. Most sites will damage in accord- 
ance with ni a: f a .  If the total number of damaged sites MO behaves as a fractal, then 
MO- fd f  with d, the fractal dimension. In this case, I: ni - t d l + '  and Mq - tdf('-ql. If 
these assumptions are right, then 4 ( q ) = d , ( l - q ) .  In figure 2, + ( q )  is shown as a 
function of q for T = 1 .OO and N = 49. It is a straight line; the cluster of damaged 
sites grows as fd' with d, -- 1. At the onset of the phase transition and inside the frozen 
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phase the linear behaviour disappears. In figure 3 we show our results for T=0.25. 
We also checked the existence of multifractality for T = 0.15; the corresponding curve 
is indistinguishable from figure 3. This implies that the set of all damaged sites does 
not satisfy the simple relation n, a t n ;  instead it can be decomposed into many fractal 
subsets, each one made of sites characterised by a fractal exponent a l .  Thus, in the 
frozen phase there are clear signs of multifractality in time. 

We also checked multifractality in terms of the number N of cities. We computed 
the moments M4 at time to such that all the bonds have been damaged at least once. 
These measurements are taken at T >  T,. It is beyond our computational capacity to 
compute M4( to) at T = T,. For large N, one expects: M4 - Necq) .  Again, the number 
of damaged bonds scales as MO- Nde. If the cluster of damaged bonds behaves as a 
fractal, then M4 - Nde(1-4) .  We measured Mq for several values of N ranging from 
16 to 100. O(q)  is shown in figures 4(a) and 4(b) as a function of q for T = 1.00 and 
T = 0.35. It is not a straight line. This implies the existence of multifractality. Let us 
remark that the curvature.for the case T = 1.0 is less than for that at T = 0.35; however, 
it is not a straight line as in the case of scaling with t (see figure 2). 

Our results should be compared with those found in other systems. In the Kauffman 
model, there is multifractality in time at the critical point but it is absent in the chaotic 
phase [9]. As we showed, the same conclusion is valid for the TSP. There is no spatial 
multifractality in the Kauffman model [lo] but it is certainly present in the chaotic 
phase of the TSP. Very recently, spatial multifractality was found at the onset of the 
transition of the 3~ Edwards-Anderson spin glass [18]. On the other hand, it was not 
found either in the 2~ version of the same model or in the 3~ Ising ferromagnet [18]. 
Our work shows that from the point of view of multifractality the TSP is similar to the 
3~ Ising spin glass. 

In summary, we have studied numerically the damage spreading in the two- 
dimensional Euclidean TSP. We have found a critical temperature T, = 0.20-0.25 below 
which there is no spreading of damage. We have determined the moments of the bond 
damage probability distribution. The scaling properties of Mq with t have been tested. 
We found multifractality for T <  T,. For T >  T,, the moments show a simple fractal 
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4 
Figure 4. Spatial scaling exponents e( 9) as a function of 9 for ( a )  T = 1.00, (6) T = 0.35. 

behaviour with d, = 1. We have also studied the scaling of the Mq with N, finding 
evidence of multifractality in the chaotic phase. 

One of the authors (ENM) thanks H J Herrmann for correspondence. 
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